Meta发力3D生成 ChatGPT时刻要来了吗 不到60秒就能生成3D手办

机器之心报道

编辑:陈萍、张倩

3D 生成,一直在等待它的「ChatGPT时刻」。

一直以来,创作 3D 内容是设计和开发视频游戏、增强现实、虚拟现实以及影视特效中最重要的部分。

然而,3D 生成具有独特而艰巨的挑战,这是图像和视频等其他生成内容所不具备的。

首先,3D 内容在艺术质量、生成速度、3D 网格结构和拓扑质量、UV 贴图结构以及纹理清晰度和分辨率方面具有严格的标准;

其次,与其他研究相比,可用的数据量少。虽然该领域有数十亿张图像和视频可供学习,但可用于训练的 3D 内容数量要少三到四个数量级。因此,现阶段的3D 生成还必须从非 3D 的图像和视频中学习,而且需要从部分 2D 观察中推断出 3D 信息;

传统方法生成的3D 资源通常难以实现逼真的照明和材质属性,从而限制了它们在专业工作流程中的实用性;

3D生成是一个非常耗费算力的过程,主要因为它涉及到复杂的计算和大量的数据处理,如实时渲染、细节处理。并且由于算力不够,可能会导致生成速度非常慢。

在生成式AI爆发的当下,很多研究者开始尝试针对以上问题提出解决方案。

刚刚,Meta发布了最新系统Meta 3D Gen (3DGen),其用不到一分钟的时间,就能直接从文本生成3D资产。

论文地址:https://ai.meta.com/research/publications/meta-3d-gen/?continueFlag=24428397aaeb0cc6751570d48a532d36

3DGen支持基于物理的渲染 (PBR),这是在实际应用中重新照明 3D 资产所必需的。此外,3DGen 还支持使用用户提供的额外文本输入对先前生成的(或艺术家创建的)3D 形状进行重新纹理化。

比如下面所展示的,借助3DGen,研究者渲染出了一只金属色的小狗:

未来感满满的机器人:

3DGen还能对生成的对象纹理进行进一步编辑和定制,同样的方法也可以应用于艺术家创建的3D网格纹理而不需要修改。如下所示,3DGen将艺术家创建的3D资产渲染成彩色的蝴蝶。

蝴蝶「变身」为用粉色和绿色纱线编织的蝴蝶玩具。

通过展示可以看出,即使是复杂的文本提示,3DGen也能很好地遵循指令,生成的3D形状和纹理质量也比较好。

以下是论文中的具体信息。

Meta 3D Gen基本原理

Meta 3D Gen 是一种两阶段方法,包括两个关键组件:用于创建 3D 网格的 Meta 3D AssetGen 和用于生成纹理的 Meta 3D TextureGen。

这些技术协同工作,可生成具有高分辨率纹理和PBR材质的 3D 资产。Meta表示,该流程的速度是现有解决方案的 3 到 10 倍。

第一阶段为3D 资产生成阶段。在这一阶段,根据用户提供的文本提示,Meta 3D AssetGen(简称 AssetGen)创建初始 3D 资产。此步骤生成具有纹理和 PBR 材质贴图的 3D 网格。推理时间约为 30 秒。

接下来是第二阶段。给定第一阶段生成的 3D 资产和用于生成的初始文本提示,第二阶段将基于该资产和提示生成更高质量的纹理和 PBR 贴图。第二阶段用到了文本到纹理生成器 Meta 3D TextureGen(简称为 TextureGen)。推理时间约为 20 秒。

此外,给定一个无纹理的 3D 网格和描述其所需外观的提示,第二阶段还可用于从头开始为该 3D 资产生成纹理(网格可以是先前生成的,也可以是艺术家创建的)。推理时间约为 20 秒。

下图为第一阶段和第二阶段可视化对比。后者往往具有更高的视觉美感,看起来更逼真,细节频率更高。

我们不难发现,3DGen 以 AssetGen 和 TextureGen 为基础,将3D 对象的三个关键信息进行了很好的互补:视图空间(对象的图像)、体积空间(3D 形状和外观)和 UV 空间(纹理)。

此过程从 AssetGen 开始,通过使用一个多视角和多通道的文本到图像生成器,生成关于物体的几个相对一致的视图。接着,AssetGen中的一个重建网络会在体积空间中提取出3D对象的第一个版本。此过程接着进行网格提取,建立对象的3D形状和其纹理的初步版本,这一系列步骤构成了从文本描述到3D模型的转换过程。最后,TextureGen 组件利用视图空间和 UV 空间生成的组合来重新生成纹理,提高纹理质量和分辨率,同时保持对初始提示的保真度。

实验对比

运行时间和功能上的对比

论文将3DGen的性能与业界领先的文本到3D生成模型进行了比较,包括 CSM、Tripo3D、Rodin Gen-1 V0.5、Meshy v3等。

在时间上,stage1最快的是Tripo3D(经过笔者实测,Tripo3D线上版本目前stage1为10秒,stage2是2分钟);stage2最快的是Meta 3D Gen,Tripo3D紧随其后,Rodin Gen-1 V0.5排名第三,用了2-30分钟完成。

在功能上,除了Rodin支持重拓扑之外,笔者实测Tripo3D也支持retopology。

定量评测指标

表2主要表现了不同模型遵循 prompt的结果。主要关注text-to-3D,实验中用了来自2023 Google DreamFusion论文中的404个prompt,细分为物体(156)、角色(106) ,组合角色物体 (141),难度由低到高。定量对比部分全部是user study(用户偏好)。

结果表明:在text-to-3D比较重要的prompt fidelity指标上:

综合排序为:Meta 3D Gen > Third-party T23D generator > Tripo3D > Meshy v3 > CSM Cube 2.0 > Rodin Gen-1 。其中前三名差距很小(3个点的差距,404个prompt中的12个)。CSM和Rodin相较其他方法有明显差异,Rodin和3DGen相比,两者相差 21.8个点。

分项评测方面,最简单的objects中表现最好的是Meshy v3。角色类和复杂组合概念的表现代表了技术水准,也是3D产业应用中最重要的部分,Meta在复杂组合上排名第一,Tripo3D则是难度越高表现越强,仅次于Meta,和第一名差距很小。

表3比较了Meta和其他方法的A/B win rate和loss rate结果,数字win rate越低代表所对比方法越强,loss rate越高代表所对比方法越强,可以得出:

Meshy v3纹理分最高、Rodin纹理分最低;

Rodin几何分比较高;

在综合性一致性、整体质量方面,Rodin表现不佳;

All users和专业用户打分标准可以看出略有不同,但排名趋势是一样的:对几何和纹理的正确性给予了更多的权重;

上图横坐标是前面提到的prompt复杂度,纵坐标是Meta win rate,低于50%说明对比方法比Meta好,折线越低说明方法越好。图中比较了多个维度,包括prompt还原度、综合视觉质量、几何视觉质量、纹理细节、纹理瑕疵等指标。

Meta在论文中谈到越复杂的prompt,他们的方法优势越明显,这个其实和前面Table 2中Tripo3D的趋势和优势是一致的。可以推测如果这里加上Tripo3D,Tripo和Meta应该不分伯仲。

定性质量对比

在这篇论文中,Meta还给出了几个模型的定性结果对比图,我们可以从这些图中看出一些差别。

从prompt遵循程度来看,3DGen表现优秀,比如对于第一行的羊驼雕塑,它可以把prompt中提到的logo文字写上。但以第三行的case为例,CSM的语义理解较弱,Tripo则展现了其他模型都失败的「被锻造的锤子」,甚至还基于推理生成了3DGen没有考虑到的炭火。

但综合几何细节和纹理细节来看,3DGen的纹理细节略显粗糙,Meshy和Rodin的第一行几乎没什么纹理,而Tripo3D的纹理结果则要好得多,几何细节非常丰富,人、物也更保真,不像3DGen一样有时候脸会垮掉。

图7表现了同一场景下的比较结果,包括 Tripo3D 、Meshy v3 、以及 3DGen。综合来看,Meshy方法生成的纹理瑕疵多一些、生成的几何粗糙一些;放大来看,Tripo和3DGen效果不相上下,但Tripo生成结果更形象、灵动一些。

笔者用Tripo尝试了测试集中的龙蛋效果

3D生成来到「ChatGPT时刻」前夜

3D生成赛道其实一直是资本市场的宠儿。A16Z接连对3D生成赛道出手,除了最近名声大噪的Luma Labs之外,Meta论文中提到的CSM,Google系的Yellow,还有曾经争议较大的Kaedim都是A16Z的被投明星企业。

在Meta论文中参与比较的工作中Meshy出自知名学者胡渊鸣的团队,Tripo则出自之前和Stability AI发布TripoSR的团队VAST。

Meta此篇论文中引用了不少VAST团队的论文,不仅包括TripoSR,也包括刚被ECCV收录的UniDream、曾经爆火的Wonder3D、Triplane meets Gaussian splatting等等。

据笔者根据Tripo官方海外媒体信息,全球开发者已经基于TRIPO生成了近四百万个3D模型,TripoSR上线一周就在Github上拿到了3K+的star量。基于这种人气,Tripo社区也推出了全球第一个AI 3D全球渲染大赛。

视频链接:https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650924483&idx=2&sn=81fad5919205e7a835f28c9fdfcbf8b9&chksm=84e421bdb393a8abe3c8116093170bbc04ad3d9384101173a87132757a00403f28120282d553&token=1170670493&lang=zh_CN#rd

据笔者调研,不管是CG还是3D打印领域都有许多目前的落地探索,不管是全球最大的3D素材交易网站CG模型网定向邀请创作者测试,还是3D打印龙头开始探索AI,都体现出比想象中更快的商业化落地速度。

VAST上线Anycubic的模型社区网站Makeronline和CG模型网

Keadim则选择和初创团队Nakkara一起探索3D打印业务:

总体来看,3D生成技术在学术和行业落地层面都不断取得突破性进展,我们有理由相信,3D大模型会释放更多潜力。


什么是元宇宙?

“元宇宙”一词最早指的是1992年的科幻小说《雪崩》中描绘的虚拟现实世界。 如今,对于元宇宙定义,一般可以理解为“利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间”。

什么是元宇宙?

元宇宙(Metaverse)是整合多种新技术而产生的新型虚实相融的互联网应用和社会形态,它基于扩展现实技术提供沉浸式体验,基于数字孪生技术生成现实世界的镜像,基于区块链技术搭建经济体系,将虚拟世界与现实世界在经济系统、社交系统、身份系统上密切融合,并且允许每个用户进行内容生产和世界编辑。

元宇宙一词诞生于1992年的科幻小说《雪崩》,小说描绘了一个庞大的虚拟现实世界,在这里,人们用数字化身来控制,并相互竞争以提高自己的地位,到现在看来,描述的还是超前的未来世界。 关于“元宇宙”,比较认可的思想源头是美国数学家和计算机专家弗诺·文奇教授,在其1981年出版的小说《真名实姓》中,创造性地构思了一个通过脑机接口进入并获得感官体验的虚拟世界。

对于元宇宙定义,北京大学陈刚教授、董浩宇博士认为:“元宇宙是利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。”

名词定义:

通过对元宇宙构思和概念的“考古”,可以从时空性、真实性、独立性、连接性四个方面去交叉定义元宇宙。

从时空性来看,元宇宙是一个空间维度上虚拟而时间维度上真实的数字世界;从真实性来看,元宇宙中既有现实世界的数字化复制物,也有虚拟世界的创造物;从独立性来看,元宇宙是一个与外部真实世界既紧密相连,又高度独立的平行空间;从连接性来看,元宇宙是一个把网络、硬件终端和用户囊括进来的一个永续的、广覆盖的虚拟现实系统。

准确地说,元宇宙不是一个新的概念,它更像是一个经典概念的重生,是在扩展现实(XR)、区块链、云计算、数字孪生等新技术下的概念具化。

在原著中,元宇宙(Metaverse)是由Meta和Verse两个单词组成,Meta表示超越,Verse代表宇宙(universe),合起来即为“超越宇宙”的概念:一个平行于现实世界运行的人造空间,是互联网的下一个阶段, 由AR、 VR、3D等技术支持的虚拟现实的网络世界。

特征与属性:

Roblox给出的元宇宙包含八大要素:身份、朋友、沉浸感、低延迟、多元化、随时随地、经济系统和文明。 要素众多,每个要素背后,还有一连串的解释。 总之,一句话说不清楚,这也恰恰说明这一概念的模糊性。

在元宇宙特征与属性的START图谱中,北京大学陈刚教授与董浩宇博士梳理并系统界定了元宇宙的五大特征与属性,即:社会与空间属性(Social & Space)、科技赋能的超越延伸(Technology Tension)、人、机与人工智能共创(ArtifIcal, Machine & AI)、真实感与现实映射性(Reality & Reflection)、交易与流通(Trade & Transaction)。

电脑显示器的的原理是什么?

CRT显示屏】CRT(Cathode Ray Tube,阴极射线管)的基本工作原理一直沿用了几十年,直到今天也没有太大的变化。 显示器是一种复杂的设备,其扩展性和可靠性也十分惊人,在这一方面,电子控制起了很大的作用,任何机械都会有磨损,唯有用电子元件才能延长寿命,甚至能适应数千小时的工作。 电子枪是显像管的核心,它发出的电子束击中光敏材料(荧光屏),刺激荧光粉就能产生图像。 实际上,电子枪和大体积、功率强劲的二极管没有什么区别,其原理也适用于电视机和示波器。 1、生成图像 CRT分为几个部分:Deflection Coil(偏转线圈)用于电子枪发射器的定位,它能够产生一个强磁场,通过改变强度来移动电子枪。 线圈偏转的角度有限,当电子束传播到一个平坦的表面时,能量会轻微地偏移目标,仅有部分荧光粉被击中,四边的图像都会产生弯曲现象。 为了解决这个问题,显示器生产厂把显像管制造成球形,让荧光粉充分地接受到能量,缺点是屏幕将变得弯曲。 电子束射击由左至右,由上至下的过程称为刷新,不断重复地刷新能保持图像的持续性。 2、混合颜色 旧式的显示器只有单一的电子枪,仅能产生黑白两种颜色,即是传说中的Monochrome Monitor(单色显示器)。 新一代显示器有三只电子枪,每个电子枪都有独立的偏转线圈,分别发出RGB(Red、Blue、Green,红、蓝、绿)三束光线,混合光线可以产生1600万种颜色,或者说真彩色。 某些显示器能用一个电子枪发出三束光线,经过混合亦能生成其它颜色。 生成彩色图像电子枪要扫描屏幕三次,其过程比黑白图像复杂得多。 3、回转变压器(Flyback Transformer) 回转变压器类似发动机点火线圈,在特定时间发出一个低能量信号给回转磁线圈,并生成磁场。 当低能量源关闭后,磁线圈的能量转移到高能量输出中,最后传到电子枪发出电子束。 依照CRT尺寸的不同,产生的能量也各有差异,通常在伏至伏之间。 当电子枪完成一条线的扫描后,回转变压器会放出能量,关闭电子枪并消去磁场,强制光束发到屏幕的其它位置,就能画出下一条线。 在显示器开启时,不要直接触摸CRT,它带有上万伏的电压,你会被击伤并导致死亡。 4、垂直和水平同步 垂直和水平是CRT中两个基本的同步信号,水平同步信号决定了CRT画出一条横越屏幕线的时间,垂直同步信号决定了CRT从屏幕顶部画到底部,再返回原始位置的时间,垂直同步也可以称为刷新率。 显卡把这两个参数提供给显示器,显示器用它们来驱动内部振荡电路,确定显示器与当前显卡的设置相同。 标准电视机的水平同步信号=512线×30帧/秒=15.75kHz,显示器的水平同步信号可任意调节,幅度在15.75kHz-95Khz之间。 把水平同步信号反转能够得出扫描一条线的时间,即1/17.75Khz=63.5微秒。 在垂直折回脉冲使电子枪关闭后,电子枪会返回原来位置,电视机扫描一帧图像要返回525次。 因为CRT的频繁开关和扫描切换,在屏幕上实际表现出来的线数比525要少一些,约为428-399条线。 5、交错和非交错 显示器表现的是静态画面,并以连续的画面来组成动画,由于电脑画面是随机的,无法预先录制,在玩3D游戏时就会感到画面的过渡出现停顿感。 为了追求显示画面的速度,需要采用的二种不同扫描方式。 电视机采用的是交错(Interlace)扫描,机器本身刷新速度不足,每一帧都要刷新两次,由于人眼的视觉暂停原理,会感到画面是连续播入的,缺点是人眼能发现两次刷新的不同,感到屏幕有闪烁,长时间观看容易使眼睛疲劳。 显示器的隔行扫描与之相近,但有少许不同。 电视机能稳定运行在30Hz,或30帧/秒,但早期CRT并不能保持刷新率不变,磁偏转线圈常常影响着电子束的发射,有时还会减弱电子束,以及荧光粉的发热时间的限制,导致上半部分屏幕比下半部分屏幕更亮,所以我们不能再沿用电视机的技术,必须有所突破。 后来,人们采用了分线刷新的方法,第一次扫奇数行、第二次扫偶数行,缺点是每做一样工作要刷新两个周期,显示器的反应较慢,当然,画面闪烁是少不了的。 不过,也因此而增加了显示器的刷新速度,以30fps的频率实现60fps图像亦变为可能,避免了显像管负荷过重而烧毁。 幸运的是,在荧光粉发热时间和稳定性增加,以及电子枪得到重大改进的今天,上述发生早期CRT应用的问题亦不复再现。 6、金属隔板技术 点状阴罩(Shadow Masks)指电子枪和荧光屏之间放置一个金属隔板,上面有许多小洞让电子通过。 其作用是防止一个荧光点加热时传导到附近的点,分离显示器的色彩。 在阴罩技术方面,有两点最重要:一是如何使用更薄的金属来制造隔板,并缩小点与点之间的位置(Dot Pitch,点距),让它与屏幕上的点一一对应;二是如何修正电子束的颜色,让它更符合要求。 阴罩的主要缺点是金属板会随着能量的变化而产生弯曲,特别是在高亮度的情况下,需要更多的能量来战胜阴罩的阻抗,弯曲会更加严重。 金属板变形使电子束偏离原定目标,显示的画面会模糊不清。 为此,人们只好不断寻找合适制造阴罩的金属,目前效果最好的是INVAR(不胀铜),它是镍/铁合金,膨胀率几乎为零。 阴罩的第二个缺点是屏幕弯曲会产生刺眼的眩光,用AGC(Anti Glare Coatings,防眩光涂层)能解决这个问题。 Aperture Grills(栅条式金属板)的原理和阴罩差不多,只是圆孔换成了垂直的栅条,增加了电子束的穿透率。 由于栅条是垂直的,可以使用柱面显像管,在垂直方向实现完全平面。 缺点是金属板过热会导致栅条间隔变小,显示图像模糊。 除此之外,栅条的微小振动也会导致画面颤抖。 Sony的Trinitron(特丽珑)采用了两条水平金属线来固定栅条的位置,虽然在高亮度时可以见到约隐约现的金属线,但并不影响画面的完整。 slot mask(槽状阴罩)是NEC和Panasonic开发的新技术,它结合了传统阴罩和栅条金属板的优点,以重直长方形栅条代替了旧式的圆点,增加了电子束的穿透率。 不过,它仍然无法避免金属板的变形,唯有沿用原有的球状显像管。 另外,槽的形状还要尽量接近电子束的外形,防止荧光粉受到过多的能量照射。 【LCD显示屏】(一)液晶的物理特性 液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。 让液晶如闸门般地阻隔或让光线穿透。 从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。 当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。 大多数液晶都属于有机复合物,由长棒状的分子构成。 在自然状态下,这些棒状分子的长轴大致平行。 将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。 (二)单色液晶显示器的原理 LCD技术是把液晶灌入两个列有细槽的平面之间。 这两个平面上的槽互相垂直(相交成90度)。 也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。 由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。 但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。 LCD是依赖极化滤光器(片)和光线本身。 自然光线是朝四面八方随机发散的。 极化滤光器实际是一系列越来越细的平行线。 这些线形成一张网,阻断不与这些线平行的所有光线。 极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。 只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。 LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。 但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。 另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。 总之,加电将光线阻断,不加电则使光线射出。 然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。 但由于计算机屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。 从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。 LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。 因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。 背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。 液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。 在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。 在液晶材料周边是控制电路部分和驱动电路部分。 当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 (三)彩色LCD显示器的工作原理 对于笔记本电脑或者桌面型的LCD显示器需要采用的更加复杂的彩色显示器而言,还要具备专门处理彩色显示的色彩过滤层。 通常,在彩色LCD面板中,每一个像素都是由三个液晶单元格构成,其中每一个单元格前面都分别有红色,绿色,或蓝色的过滤器。 这样,通过不同单元格的光线就可以在屏幕上显示出不同的颜色。 LCD克服了CRT体积庞大、耗电和闪烁的缺点,但也同时带来了造价过高、视角不广以及彩色显示不理想等问题。 CRT显示可选择一系列分辨率,而且能按屏幕要求加以调整,但LCD屏只含有固定数量的液晶单元,只能在全屏幕使用一种分辨率显示(每个单元就是一个像素)。 CRT通常有三个电子枪,射出的电子流必须精确聚集,否则就得不到清晰的图像显示。 但LCD不存在聚焦问题,因为每个液晶单元都是单独开关的。 这正是同样一幅图在LCD屏幕上为什么如此清晰的原因。 LCD也不必关心刷新频率和闪烁,液晶单元要么开,要么关,所以在40~60Hz这样的低刷新频率下显示的图像不会比75Hz下显示的图像更闪烁。 不过,LCD屏的液晶单元会很容易出现暇疵。 对1024×768的屏幕来说,每个像素都由三个单元构成,分别负责红、绿和蓝色的显示一所以总共约需240万个单元(1024×768×3=)。 很难保证所有这些单元都完好无损。 最有可能的是,其中一部分己经短路(出现“亮点”),或者断路(出现“黑点”)。 所以说,并不是如此高昂的显示产品并不会出现瑕疵。 LCD显示屏包含了在CRT技术中未曾用到的一些东西。 为屏幕提供光源的是盘绕在其背后的荧光管。 有些时候,会发现屏幕的某一部分出现异常亮的线条。 也可能出现一些不雅的条纹,一幅特殊的浅色或深色图像会对相邻的显示区域造成影响。 此外,一些相当精密的图案(比如经抖动处理的图像)可能在液晶显示屏上出现难看的波纹或者干扰纹。 现在,几乎所有的应用于笔记本或桌面系统的LCD都使用薄膜晶体管(TFT)激活液晶层中的单元格。 TFT LCD技术能够显示更加清晰,明亮的图象。 早期的LCD由于是非主动发光器件,速度低,效率差,对比度小,虽然能够显示清晰的文字,但是在快速显示图象时往往会产生阴影,影响视频的显示效果,因此,如今只被应用于需要黑白显示的掌上电脑,呼机或手机中。 随着技术的日新月异,LCD技术也在不断发展进步。 目前各大LCD显示器生产商纷纷加大对LCD的研发费用,力求突破LCD的技术瓶颈,进一步加快LCD显示器的产业化进程、降低生产成本,实现用户可以接受的价格水平。 (四)应用与液晶显示器的新技术 (1)采用TFT型Active素子进行驱动 为了创造更优质画面构造,新技术采用了用独有TFT型Active素子进行驱动。 大家都知道,异常复杂的液晶显示屏幕中最重要的组成部分除了液晶之外,就要算直接关系到液晶显示亮度的背光屏以及负责产生颜色的色滤光镜。 在每一个液晶像素上加装上了Active素子来进行点对点控制,使得显示屏幕与全统的CRT显示屏相比有天壤之别,这种控制模式在显示的精度上,会比以往的控制方式高得多,所以就在CRT显示屏会上出现图像的品质不良,色渗以及抖动非常厉害的现象,但在加入了新技术的LCD显示屏上观看时其画面品质却是相当赏心悦目的。 (2)利用色滤光镜制作工艺创造色彩斑澜的画面 在色滤光镜本体还没被制作成型以前,就先把构成其主体的材料加以染色,之后再加以灌膜制造。 这种工艺要求有非常高的制造水准。 但与同其他普通的LCD显示屏相比,用这种类型的制造出来的LCD,无论在解析度,色彩特性还是使用的寿命来说,都有着非常优异的表现。 从而使LCD能在高分辨率环境下创造色彩斑澜的画面。 (3)低反射液晶显示技术 众所周知,外界光线对液晶显示屏幕具有非常大的干扰,一些LCD显示屏,在外界光线比较强的时候,因为它表面的玻璃板产生反射,而干扰到它的正常显示。 因此在室外一些明亮的公共场所使用时其性能和可观性会大大降低。 目前很多LCD显示器即使分辨率再高,其反射技术没处理好,由此对实际工作中的应用都是不实用的。 单凭一些纯粹的数据,其实是一种有偏差的去引导用户的行为。 而新款的LCD显示器就采用的“低反射液晶显示屏幕”技术就是在液晶显示屏的最外层施以反射防止涂装技术(AR coat),有了这一层涂料,液晶显示屏幕所发出的光泽感、液晶显示屏幕本身的透光率、液晶显示屏幕的分辨率、防止反射等这四个方面都但到了更好的改善。 (4)先进的“连续料界结晶矽”液晶显示方式 在一些LCD产品中,在观看动态影片的时候会出现画面的延迟现象,这是由于整个液晶显示屏幕的像素反应速度显得不足所造成的。 为了提高像素反应速度,新技术的LCD采用目前最先进的Si TFT液晶显示方式,具有比旧式LCD屏快600倍的像素反应速度,效果真是不可同日而语。 先进的“连续料界结晶矽”技术是利用特殊的制造方式,把原有的非结晶型透明矽电极,在以平常速率600倍的速度下进行移动,从而大大加快了液晶屏幕的像素反应速度,减少画面出现的延缓现象。

请问meta属性存在于哪个文件,或者说怎样找到它?网站需要优化,要设置缓存时间,求高手指点一二

meta都是在网站的header文件里面设置的,你找到这个文件就可以了。 META标记用于描述不包含在标准HTML里的一些文档信息。 激烈的竞争使浏览器厂商纷纷利用META开发出许多实用的功能,又使这些功能在常用的浏览器中都有效。 下面介绍几个很有用的用法: *<META CONTENT=yourkeyword> <META CONTENT=your homepages description> 本页的关键字和描述。 在页面里加上这些定义后,一些搜索引擎就能够让读者根据这些关键字查找到你的主页,了解你的主页内容。 * <META HTTP-EQUIV=refresh CONTENT=60; URL=> 浏览器将在60秒后,自动转向到。 你可以利用这个功能,制作一个封面,在若干时间后,自动带读者来到你的目录页。 如果URL项没有,浏览器就是刷新本页。 这就实现了WWW聊天室定期刷新的特性。 * <META HTTP-EQUIV=content-type CONTENT=text/html; charset=GB2312> 描述本页使用的语言。 浏览器根据此项,就可以选择正确的语言编码,而不需要读者自己在浏览器里选择。 GB2312是指简体中文,而台湾BIG5内码的主页则是用BIG5。 * <META HTTP-EQUIV=Pragma CONTENT=no-cache> 强制性调用网上的最新版本。 浏览器为了节约时间,在本地硬盘上保存一个网上文件的临时版本。 在你要重新调用时,直接显示硬盘上的文件,而不是网上的。 如果你想让读者每次都看到最新的版本,就加上这句话。

  • 声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
  • 本文地址:https://m.srwj168.com.cn/keji312/41228.html
范志毅还有这本事
暂无