韩践/文 当前,业务主管对于人力资源管理职能最常见的批评是“招聘和甄选的产出跟不上业务的需求”。这个批评覆盖了数量和质量两个方面。其中,提升质量比数量问题更具挑战性,因为涉及匹配问题。
科学管理时代以来,“人与岗位的匹配”和“人与组织的匹配”问题,始终是企业管理面临的挑战之一,导致这个问题出现的原因有很多。
比如,很多企业在招聘时采用一些相对粗糙的人才标准,甚至不使用事先规划的人才标准,看着顺眼就进。或者,企业在甄选时过于强调可量化的硬技能,而忽视了岗位实际需要的软素质。负责招聘的管理者为了节约时间和成本,倾向于使用直觉主导的、信度和效度较低的方法(如非结构化面试)。
此外,很多公司内部的招聘政策、导向和流程都出现不一致的问题,随意性很强。这些问题都会影响招聘和甄选的效果,降低人员选拔对企业应有的价值。
随着数智技术的发展,我们都期待新技术能够帮提升人才匹配的效率,即用AI技术将招聘和甄选过程中重复耗时的工作自动化,并在整个招聘过程中实现个性化的数据分析和推荐功能,使招聘人员可以专注于复杂的甄选判断和沟通工作。据LinkedIn等招聘网站的调研估计,全球约有35%—45%的企业已经在员工招聘的流程中采用自动化或AI工具。
数智技术的优势
数智技术在提升招聘和选拔效率方面有很多优势。
比如,它可以快速处理大量简历,通过自动化的初步筛选,大大降低初筛阶段的人力和时间成本。现在,市场上的一些工具通过自然语言处理(NLP)分析简历和社交媒体数据,评估视频面试的表现,甚至利用算法判断个人与职位的匹配度。此外,越来越多的算法还能结合各种心理测量量表,比如认知能力和责任心等,根据不同的岗位需求进行加权处理来预测员工的绩效表现。
在面试环节,数智应用可以记录和分析候选人的声音(音调、音量和节奏)、身体动作(手势、姿势等)以及面部表情(快乐、惊讶、愤怒等),从而综合评估候选人的个人特点、表达风格、沟通技巧、说服力、抗压性以及逻辑能力,并结合其它测评数据预测申请者的工作表现。随着算法分析的预测因子增多以及数据量的增加,算法能更加深入地理解这些因子和工作表现之间的关系,减少预测误差,帮助管理者们更有效地进行人才选拔。
很多企业招聘面临的主要问题是缺乏结构化的人员招聘和选拔流程。在这些企业中,面试官和决策者的主观喜好起到了比较重要的作用,很可能导致有偏见的决策,从而降低整个招聘体系内部的一致性和甄选效能。在这种场景下,使用数智工具促进人员选拔流程的标准化和结构化,可以增加申请者们对于申请流程的公平感。
数智技术还有一个重要优势,就是其个性化和适配能力。
通过分析简历和招聘需求,算法能够根据市场变化和企业需求,给管理者提供适配建议。相较于传统的信息处理方式,当前数智技术的发展趋势是处理多种数据形式,如文本、音频和视频,为拉通和整合大量无结构、嘈杂的数据提供了新的可能性。
随着数据管理能力的提升,算法甚至可能打破公司传统的人才选拔框架,发现一些以前未被重视但非常有价值的标准。
近些年,一些研究揭示了算法可能会在甄选时带来的惊喜:即从数据中挖掘出“非传统”人才。这些人可能来自非精英院校,不一定满足企业常用的一些“硬杠杠”,如相关工作经验、专业资质或大学成绩,但因其在某些方面表现出的强项(如责任心强或表达能力出众)而被算法选中。算法这些不走寻常路的思考方式可以启发我们拓展人才招聘的思路,提升人岗匹配的效果。
目前,对于人工智能甄选的有效性已经积累了一定的实证结果。例如,视频甄选方面的研究表明,经过专家评估的模型通过分析申请者的面部表情、语言和声调信息(如音高),能够较好地预测申请者的性格特质。其中,口头表述的内容文本,即申请者“说了什么”,对预测效果的贡献最大;而面部和声音节律信息对预测效果的贡献则相对较少。
进一步看,在训练人工智能评估人格特质,例如“责任心”和“外向性格”时,使用面试官的评价数据,比使用申请者自我报告的评估数据效果更好。
此外,AI在分析社交媒体数据,如申请者如何在社交媒体中展示自己等方面初现成果。例如,通过分析Facebook(美国社交媒体平台,现称Meta)上的文本内容,AI模型可以预测申请者的人格特质和智力水平等,且其预测结果在六个月的时间间隔内保持相对稳定。
研究显示,相比自我报告的人格测试,AI基于社交媒体数据预测的人格特质,比人类招聘者的预测准确度略有提高。
还有一些研究表明,由算法选拔的候选人通过面试并入职的可能性,比一般选拔流程高出14%。这些员工入职后的生产力会高出0.2至0.4个标准差,且在薪资谈判中提出异议的可能性也要低12%。此外,大部分研究都提到使用算法可以大幅节省选拔成本。
数智化应用的局限性
消除算法的偏见在很大程度上取决于用来训练模型的数据:如果训练模型的数据承接了过往招聘和甄选模式的偏见,即便算法和模型是可靠的,偏见可能依然会在数智化招聘中存在,甚至在系统标准化执行的过程中被放大。
2014年,亚马逊工程师团队启动了一个旨在自动化招聘流程的项目,包括一个用于筛选简历的算法。然而,公司发现该算法对申请软件工程师职位的女性申请者存在系统性歧视。训练算法的数据主要基于男性工程师的简历,导致算法倾向于选择与现有男性员工简历相似的申请者。
具体歧视的方式包括对毕业于女子学院的候选人不利,降低包含“女性”词汇的简历评分,以及偏好使用男性倾向动词的简历等。尽管程序员尝试修复这一问题,但最终未能成功,亚马逊在一年后也停止使用了该软件。
这个事件引起了人们对算法偏见的广泛关注,并警醒人们,在数智技术进一步提升企业招聘和甄选效率的同时,企业需要持续识别和刷新那些真正能够促进企业成功和员工高绩效的驱动因素,并以此为基础训练模型,减少由于数据偏差或人类偏见带来的甄选“噪音”。
在招聘和甄选时使用的人才标准,一般是基于岗位描述以及企业内部绩优员工的特征来构建的。但对于这种做法一直存在质疑的声音。
首先,输出绩效分数和绩优员工特征的绩效管理体系是否可靠?当被问及“哪些特征能够解释和区分员工之间的绩效差异”时,恐怕很多企业对其绩效评估和管理体系都不是十分自信。因为,大多数企业的绩效考核体系严重偏向财务指标和显性的量化结果,这些从数字到数字的体系,很容易忽略工作过程和员工的日常行为。而现实中的绩优员工是有血有肉的,其特质和绩效之间的关系复杂而立体,需要大量过程数据和行为数据来诠释和提炼他们的特点,才能形成有效的模型。
在甄选的时候,如果我们只关注一些显而易见的表面特征(如毕业院校、性别、工作经验),而忽略影响实际工作绩效的深层要素(如合作精神、学习潜力等),根据这样的模式构建的算法,也会错过一些真正有潜力的候选人。
这就是为什么在依赖算法做出重要决策之前,我们必须仔细考量和验证假设的完整性与合理性以及用来构建算法的数据质量的原因。
如何让AI更靠谱
首先,我们需要分析选拔体系的整体效率和效益。
自上世纪90年代以来,企业采纳了多种方法,以量化和分析招聘的效能。针对招聘体系的分析主要包括成本效益分析、时间效率分析、招聘质量分析(如新员工的早期绩效、离职率和员工满意度)、招聘渠道效果、应聘者体验、招聘转化率以及招聘投资回报率(ROI)等。
这些方法能够帮助组织更精准地评估员工招聘的成本、速度、质量以及招聘活动对组织的长期影响。
此外,通过对不同招聘渠道的分析,组织可以找到更有效的招聘途径;通过调查新员工的应聘体验、入职后绩效和满意度,可以帮助组织提升招聘活动的质量和公司的雇主品牌。当这些方面的运营数据积累到一定程度时,企业还可以建立模型来全面提升招聘和甄选的投入和产出。
值得注意的是,使用数智化工具并不是提升甄选效果的灵丹妙药。当前,企业的招聘和选拔体系常常被诟病“无效”,关键问题在于经验不足、投入不足或急功近利。
很多企业倾向于选择低成本且方便的招聘方法,如仅仅采用面试就做出决策,省去了笔试、特质评估和工作样本等多种测试结合的方法。这样做虽然降低了局部成本,但可能导致因人员配置不当而影响整个组织的效率和效益。
工业心理学的大量研究表明,管理成熟度更高的企业通常会采用多种甄选方式的组合以提升人才选拔的效果,而精心规划和实施的招聘活动还将为企业和员工奠定良好的雇佣关系。因此,我们经常说,管理员工体验的起点是招聘工作开始的那一刻,而不是进入公司签约之时。
面对AI的发展,企业都有一个“提效梦”。需要提醒企业的是,实施算法招聘需要在数据获取、清洗、软硬件以及培训等方面进行大量的前期投资;包括对算法进行反复培训,提升其模型的有效性和准确度。前期的投入会耗费大量资源,企业对此要有合理的预算和预期。
其次,我们可以从提出一些“靠谱”的问题开始。
无论是否使用算法,企业在进行招聘和甄选时,都要面对两个关键问题:如何不断迭代人员甄选的标准和过程,使之有助于预测申请者未来的工作绩效?如何不断提升申请者在招聘和甄选过程中的体验,使之有助于提升企业的吸引力和雇主品牌?
从管理过程看,我们还可以把这两个大问题拆解成一系列的小问题。如果我们在甄选中使用数智化工具,在多大程度上可以有效预测申请人的实际工作表现?数智化工具是否经过历史数据或员工试用期的数据分析等实证研究检测?是否使用了广泛而多样的数据样本训练甄选模型,以确保数智化工具对于不同群体的预测是准确而无偏差的?算法的设计能否反映工作的职责和要求?算法选拔的内容是否能够通过企业内外部专家的参与和评估,以确保其选拔的内容与实际的工作密切相关?算法选拔的过程是否透明且能够被用户(如人力资源从业人员、业务主管或应聘者)理解和信任?
回答这些问题,企业需要不断实践、试验、复盘和迭代。不断重复这些问与答,能够让我们在萃取技术价值、提升招聘和甄选效能方面少走弯路。
此外,还有一个常见的问题是,专业的招聘经理会不会被算法所替代?
笔者认为,目前看,跟有经验的招聘经理相比,算法还无法从认知角度复制人类招聘和评测雇员的直觉或经验感,当评估诸如领导力或团队合作等难以量化、具有情境性的软技能时,使用算法的效果并不理想。
面向未来,员工甄选的有效性依然取决于组织目标、职位分析、甄选设计等要素的匹配,而最优的甄选结果通常来自于人类专家与机器的协作:人工智能提升甄选效率和数据驱动的洞察,助力减少人为偏见;人类专家则通过情境理解力、适应性判断和伦理考量来整体提升甄选的效果。
(作者系中欧国际工商学院管理学教授,中欧国际工商学院研究助理郭景豪对此文亦有贡献)
AI时代的智能招聘系统究竟是什么意思?
这个是AI得贤招聘官独创的概念,AI时代的智能招聘系统,意思就是摆脱派冲传统的招聘方案,用现在最流行的模式,传统招聘系统永久免费,带有ai功能的,类似:一键发布、简历库集合查重、AI简历解析、AI视频面试、AI电话机器人、AI文字聊天机器人、模尘姿歼拟编程、心理测评和背景调查等模块可进行选购付费,帮助企业运用最新的AI和RPA技术最大程度的实现了招聘册粗工作的自动化,并通过为企业识别和推荐最优秀的候选人来帮助组织提高人均效能。
ai面试是什么
AI面试是指应聘者通过人工智能技术进行的在线面试。
在传统的面试中,面试官通过面对面或视频交流的方式提问,考察应聘者的知识、技能、经验和逻辑思维能力。 而AI面试则是借助人工智能技术,通过语音识别、自然语言处理等技术,使得面试过程可以自动化进行。
AI面试的优势在于其高效便捷性和客观公正性。 它可以大大降低企业的面试成本和时间,同时减少主观因素对面试评估的影响。 此外,AI面试还可以实现对大规模求职者进行面试评估和筛选,提高招聘流程的效率和准确性。
AI面试并不能完全取代传姿碰唯统面试,因为它无法全面评估候选人的软技能和人际交往能力。 传统面试的互动性和综合性评估在某些情况下仍然十分重要。 AI面试可以作为一个辅助工具,提供更高效、客观和大规模的面试评估方式。
AI面试的特色:
1、自动化和高效性:AI面试利用人工智能技术,可以自动化进行面试,大大提高了面试的效率和速度。 面试过程中,候选人可以灵活选择吵轮时间和地点,而不用受限于传统面试的时间和地点限制。
2、客观公正评估:AI面试通过语音识别、自然语言处理等技术,能够客观公正地评估候选人的回答。 系统可以评估语言表达能力、逻辑思维能力、专业知识掌握程度等,减少主观因素对面试结果的影响。
3、大规模评估和筛选:AI面试可以同时对大量候选人进行评估和筛选,对于企业招聘流程中的初步筛选环节特别有用。 通过自动化的方式,快速地确定哪些候选人符合岗位要求,提高了招聘效率。
4、个性化问题生成迹培:AI面试可以针对不同的候选人生成个性化的问题,根据他们的回答情况实时调整问题,更好地评估候选人的能力和适应性。
5、数据化分析:AI面试生成的评估结果和面试报告可以进行数据化分析,帮助企业更好地了解候选人的优势和不足,为招聘决策提供参考依据。
AI面试现在很火吗?用这个做面试招聘真的靠谱吗?
根据以往求职者在桂聘网分享的求职经历看,
从去年开始,许多校招季的金字招牌也都纷纷在面试环节中增加了AI面试/Digital Interview。 不少招聘平台更是以智能面试系统为业务增长点,扮演起了技术传火者的角色。
而对于应聘者来说,知道自己将要面对的是AI这个不知疲惫、么得感情,还明察秋毫的“拦路虎”,恐怕不少人都会感到亚历山大。 尤其是应届生,以往还有学长学姐们的言传身教指路,可面对“AI面试官”这个新事物,市面上还真没太多有效经验可供参考。
今天就来聊聊,AI面试的考察边界到底在哪里,以及怎样“攻略”它。
AI泛滥背后,用人机构的阳谋
如果你看到心仪的企业或岗位需要先过AI这一关,不要方张,战略上藐视、战术上重视,往往是“攻略”下AI面试官的前提条件。
之所以这么说,是因为市面上有太多借AI之名、行宣传之实的“金主爸爸”。 其中,以最贴近大众规模市场的快消品领域为重灾区。 最先在校招等环节中打出“AI面试”招牌的,大多都是这类,比如食品饮料(可口可乐)、日化用品(宝洁、联合利华)等等。
一方面,这些企业岗位大多没有特别的专业限制,又身披跨国500强的光环,简历筛选压力非常大;同时,校招也是一次竖蔽非常好的在年轻人中“博关注”的好时机,很多公司都会打出“寻找未来管理者”的口号,竞争极其激烈,Open Question、AI面试、游戏测评等创意型招聘方式也能有效地帮助其扩大自身地影响力,强化品牌形象。
这也决定了,其AI面试系统需要满足两个核心诉求:
第一,推出的时机是不是够快,这样才能在宣传上“先声夺人”;第二,数据的多样性和算法的鲁棒性是不是够高,以避免因歧视、通过率等引爆应聘者的负面情绪。
因此,这些品牌企业所采用的AI面试解决方案,大多是经由第三方算法公司结合市面上一些较为成熟的AI技术应用打磨而成的体验。 这一意味着,AI面试系统只能在初步粗略筛选上起到一定的辅助作用,很难从根本上决定能不能得到offer,反而能规避初面时面试官基于感性判断(如颜值、口音、毕业院校等)所带来的偏差,让更多人岗匹配的应聘者拥有机会;而另一方面,基于深度神经网络模型的训练逻辑,以及当前NLP、人脸识别、情感算法等的技术天花板,也让应聘者有机会针对AI系统的考察点按图索骥、逐个击破。
下面我们不妨来一一认识一下这些能力不同的特殊面试官。
攻略难度一星:问答AI面试
这种产品往往是将NLP自然语言理解技术与声音识别算法相结合,以问答形式来获取一些岗位匹配相关的关键信息。
日本人才公司En Japan就让即将毕业的大学生对着一台只会发问的手机,进行了长达一个小时、一问一答的面试,包含126个问题。眼见求职者到最后已经被虐的无语凝噎了……
此类“面试官”一是借助声音算法,统计语音、语调等,对应聘者的反应速度、心理情绪等进行分析;另外借助NLP算法,对回答进行关键词和语义分析,结合与企业业务和岗位需求的相关问题,比如快消品必问的“宝洁八大问”及其变种,进行匹配度的初始判断。
面对这些仅凭声音与语言特征来选人的面试官,由于其参数都是人为设定的,预先剔除了一些隐含的感性偏好,因此在判断上也会相对公正,攻略起来也能有的放矢。
首先我们知道,这些面试软件大晌拿多是提前设置好问题和答案的标准问题。 比如前面提到的En Japan测试软件,就是收集了往期15年的面试问答训练而成,主要涉及了基本信息、工作技能、性格特征等。 与人类面试官有时还会聊聊家常缓和气氛,或是提出刁钻问题施加压力等不同,AI面试系统往往只会一板一眼地交互和提问,只要在参加面试前多做功课,了解用人机构的企业文化、用人理念,是快节奏、重创意余谨州还是全球化等,合理调整和并有意识训练自己的语音,就能够规避许多意外状况的发生。
同时, 就和高考前老师反复提醒“字写得漂亮能多得印象分”一样,在回答AI问题时最好也投其所好,尽量使用一些符合机器逻辑来组织语言。 由于AI主要是基于语音实时转移、关键词提取匹配、语义理解来判断求职者是否和岗位描述想匹配。 因此,搞清楚一些必要的硬指标hard skill,并有针对性地在陈述中适当点到一些关键词,比如领导力、国家级项目、转化率、团队意识等等,更有助于AI的匹配和筛选。
只要按图索骥,也许会觉得AI比现场面试更easy呢。
攻略难度二星:视频AI面试
如果你看中的企业实力更强、或者更懂技术,那么正面撞上视频AI这样的进阶版面试官,概率也就更大了。
简而言之,视频AI面试就是在智能问答的基础上,AI还会实时分析应聘者的面部表情、肌肉动作等,来判断应聘者的答案真伪、性格倾向,多维度考察候选人是否接近企业的理想人选。
听完不少同学的心恐怕凉了半截,岂不是连翻白眼、东张西望之类的表情语言也有可能“出卖”自己了,现在去看点《lie to me》(微表情心理学为主题的美剧)之类的还能抢救一下吗?
想要攻略这样懂得察言观色的面试官,除了必备的网络检查、仪容仪表(见人类面试官也是要注意到吧喂),恐怕还得从技术认知上打场有准备之仗。
可以放心的是,利用AI实现面部表情的情感识别,在算法上还不具备充分的科学依据,即使是微软、谷歌、IBM这样的AI巨擘,其情感识别算法也并不严谨,应用到招聘场景中很可能产生严重误导。 因此,求职软件监测情绪过滤求职者的做法也被视为是不恰当的。
比如偶尔的皱眉并不等于“愤怒”情绪,也不意味着面试者必然具备难以合作等特质。 视频面试更多发挥作用的地方,其实是识别那些表现最好的人。
以高盛、摩根大通、毕马威、联合利华、欧莱雅等大型集团所采用的HireVue或Sonru为例,其原理就是通过对个特征的识别,包括选择的语言、运用的语汇、眼神表现、声音大小等等,再将这些特质综合起来,根据以往“成功”候选人的特征数据库,判断一个人的反应、情感和认知能力等。 最后借由排名算法,让一定比例的最优秀候选人进入下一轮。
据了解,目前希尔顿集团已经利用其算法面试了多个职位,在全球范围内,HireVue系统每个季度都提供100万次面试和超过15万次录用前评估。
而正如其技术负责人所说,“人类语言、肢体语言和表达的极端复杂性,需要对算法偏见和潜在有害影响非常非常小心”,如果客户在一些题目中把90%的求职者都筛掉了,那就说明“考察点的范围过小”,并会对此作出改变。
了解了这个视频AI面试的基本原则之后,会发现并不需要对AI小心翼翼、锱铢必较。 我们固然可以找到一些投算法所好的小tips,但更建议大家照常发挥,因为每一点习惯都可能影响你未来工作的愉悦感。
比如只有10%-30%的分数权重是由面部表情决定的,其他大部分则取决于面试者的言语表现。 在语汇中,多使用一些符合目标企业偏好的特征词。 求职者喜欢说被动词还是主动词,常用“我”还是“我们”,是否频繁使用技术性词汇等,会影响系统对匹配度的评估。
再比如声音的音调,如果有的人说话真的很慢,可能不适合从事电话咨询之类的工作,而如果太快用户也来不及挺懂。 运用同理心找到心仪岗位最适合的状态,或许“感觉”比数据更靠谱。
攻略难度三星:会读心的AI
听到这里是不是已经感受到求职者的凄凉了?先别急着悲伤,如果你“不幸”面试的是读取你的社交网络的AI面世系统,那你只能在算法之下“裸奔”一圈之后,去买个彩票安慰一下自己了。
在这一关,AI往往会根据一些复杂数据来分析求职者的日常行为,进而推导出其与岗位的匹配度。 就在前不久,加州初创公司Predictim就利用NLP技术和计算机视觉技术,对保姆岗位应聘者的Facebook、Instagram和Twitter历史进行扫描,进而预测她们是否可能欺负或骚扰他人,是否可能对儿童态度恶劣等等。
当然,这样的面试官很快就被业界联合抵制了。 Facebook认为该公司违反了一项禁止开发人员使用这些信息审查求职者的禁令,因此大大限制了该公司在脸书和Instagram上获取用户数据的途径。 Twitter也中断了Predictim对其API的访问,理由是禁止其将Twitter数据用于监控目的。
类似的算法风险也曾发生在求职平台LinkedIn身上,原因是第三方网站HiQ收集了LinkedIn的数据,以预测员工可能在何时离职。
之所以科技大厂们都态度鲜明地与此类AI面试系统划分界限,主要是一是机器学习无法可靠地解释语调和言语中的细微差别,比如讽刺或笑话,在面试场景中应用十分不稳定;同时此类算法还无法监督,即具有黑箱性,一些原本可能敬业的员工很可能在不知道原因或无法做出解释的情况下失去工作机会。
另外,将面试成功的决定性因素交给AI,显然也不符合技术伦理。 如果一个企业出于决策者偏好/偏见,直接采用小范围、单一化的数据集进行训练,AI面试的公正性也就荡然无存了,甚至还可能加剧企业在年龄、种族等的歧视和排斥问题。 正如加州大学洛杉矶分校(UCL)人机交互教授安娜·考克斯(Anna Cox)所说,“任何数据集都会有偏差,这将排除那些真正擅长这项工作的人。 ”
目前看来,让AI分析招聘面试过程中的复杂要素,还是一个争议中前行的未来。
不过,技术的车轮正在加速。 IBM就宣布要使用Watson(沃森)主动搜索内部培训系统的数据,了解员工培训以及学习情况,判断他们是否具备升职潜力,以此进行内部考核。 而从这样相对结构化的数据中推倒到面试招聘环节,或许也在向广大求职者们走来。
可以说,过去我们看到一些机械化程度高、数据结构化的领域,文书、翻译、识别等被AI取代。 如今,面试这样充满交流的感性色彩的领域也未能幸免。 所幸的是,技术的魔法正在褪去,手握知识之剑的人类,终将找到自己与AI“共事”的最佳方式。 在一次次较量与交锋中去迭代和优化它,最终走出人机磨合的阵痛。