谷歌Agent首次发现真实世界代码漏洞!抢救全球数亿设备 或挽回数十亿美元损失

世界代码漏洞

新智元报道

编辑:Aeneas 好困

【新智元导读】 AI首次发现真实世界中的重大安全漏洞?SQLite中的一个漏洞,幸运地被谷歌研究者的AI Agent发现了,修复后并未造成任何损失。莫非AI再进化一番,微软的全球蓝屏事故就可以永久避免了?这个可能性令人激动不已。

LLM居然在真实世界的代码中,发现了一个漏洞?

想象一下,AI正在默默地守护着我们日常使用的软件。忽然,它发现了一个你我可能从未察觉的安全隐患,并且悄无声息地把它修复了!

就在刚刚,谷歌的Big Sleep项目揭示了一个惊人的成果:一个真实世界的安全漏洞,出现在全球广泛使用的SQLite数据库中,而这个漏洞竟然被AI成功识别出来了?在真实世界的危机扩散之前,它及时挽回了局面。

隶属于谷歌Project Zero和Google DeepMind的团队声称,这是AI Agent在广泛使用的现实软件中,发现未知可利用内存安全问题的第一个公开示例。

要知道,这不仅仅是一个崩溃的测试用例,它是AI首次在真实世界的软件中找到未知的、可利用的内存漏洞。

如果未来某一天,AI能帮我们解决所有技术领域的单点瞬时故障,不知会帮人类节省下多少财富?

用LLM在真实世界中「捉虫」

随着LLM代码理解和一般推理能力的提高,谷歌研究者一直在探索这些模型如何在识别和展示安全漏洞时,重新人类安全研究人员的方法。

在《Project Naptime:评估大型语言模型的攻防能力》中,Big Sleep团队介绍了一个利用LLM辅助的漏洞研究框架,并通过在Meta的CyberSecEval2基准测试上提升了最新的性能,展示了这种方法的潜力。

从那时起,Naptime就变成「Big Sleep」,成为了Google Project Zero与Google DeepMind的合作项目。

就在刚刚,谷歌研究者激动地表示,Big Sleep Agent发现了首个真实世界漏洞:一个存在于SQLite中的可利用栈缓冲区下溢漏洞。

SQLite是一款被广泛使用的开源数据库引擎。

在十月初,Agent发现了了这个漏洞,于是谷歌研究者立刻将其报告给了开发者,他们在同一天进行了修复。

幸运的是,AI在这个问题出现在官方发布版本之前,就发现了它,因此SQLite的用户未受影响。

要知道,SQLite作为轻量级嵌入式数据库,广泛应用于智能手机、浏览器、嵌入式系统、IoT设备等多种环境,涵盖了许多用户和敏感信息。

如果攻击者利用该漏洞进行数据泄露、系统入侵或破坏,潜在损失金额可能少则几百万,多则数十亿美元!

谷歌研究者表示,这是AI Agent首次在广泛使用的真实世界软件中发现未知的、可利用的内存安全问题的公开案例。

之所以会有这次尝试,是因为今年早些时候,在DARPA的AIxCC活动中,亚特兰大团队在SQLite中发现了一个空指针取消引用的漏洞,这就给了谷歌研究者启发——

是否可以使用SQLite进行测试,看看能否找到更严重的漏洞呢?

果然,AI Agent真的找出了一个漏洞。

这项工作,无疑具有巨大的潜力。

在软件尚未发布前就发现漏洞,就意味着攻击者没有机会利用:漏洞在他们有机会使用之前,就已被修复。

虽然模糊测试也能带来显著的帮助,但我们更需要的是一种方法,帮助防御者找到那些很难通过模糊测试发现的漏洞。

现在,AI有望缩小这一差距!

谷歌研究者表示,这是一条有希望的道路,能为防御者带来不对称的优势。

因为这个漏洞相当有趣,而且SQLite的现有测试基础设施(包括OSS-Fuzz和项目自身的测试)并没有发现它,因此谷歌研究者进行了深入调查。

方法架构

Naptime和Big Sleep项目的关键驱动因素,就是已经发现并修补的漏洞变种,仍在现实中不断被发现。

显而易见,fuzzing(模糊测试)并不能成功捕获此类变种漏洞,而对攻击者而言,手动变种分析的方法仍然性价比很高。

谷歌研究者认为,相比更为宽泛的开放式漏洞研究问题,这种变种分析任务更适合当前的LLM。

通过提供一个具体的起点——比如此前修复的漏洞的详细信息——我们就可以降低漏洞研究中的不确定性, 并且还能从一个明确的、有理论支撑的假设出发:「这里曾经存在一个漏洞,很可能在某处还存在类似的问题」。

目前,他们的项目仍处于研究阶段,正在使用带有已知漏洞的小型程序来评估研究进展。

最近,他们决定通过在SQLite上开展首次大规模的真实环境变种分析实验,来测试他们的模型和工具链。

他们收集了SQLite repository近期的一系列提交,手动筛除了无关紧要的改动和纯文档更新。

谷歌Agent首次发现真实世界代码漏洞!抢救全球数亿设备

随后,他们调整了prompt,为AI Agent同时提供了提交信息和代码变更,并要求它审查当前代码库(在HEAD位置)中可能仍未修复的相关问题。

Project Naptime

Naptime采用了一种专门的架构来增强大语言模型进行漏洞研究的能力,其核心是AI Agent与目标代码库之间的交互。

系统架构

为了让AI Agent可以模仿人类安全研究员的工作流程,研究团队开发了一系列专用的工具:

发现漏洞

这个漏洞非常有趣,比如在一个通常为索引类型的字段iColumn中,使用了一个特殊的哨兵值-1:

: struct sqlite3_index_constraint {: int iColumn; : unsigned char op; : unsigned char usable; : int iTermOffset; : } *aConstraint; 

这种模式产生了一个边缘案例,所有使用该字段的代码都需要正确处理这种情况,因为按照常规预期,有效的列索引值应该是非负的。

seriesBestIndex函数在处理这个edge case时存在缺陷,当处理包含rowid列约束的查询时,导致写入了带有负索引的堆栈缓冲区。

在研究者提供给AI Agent的编译版本中,debug assertion功能已启用,这种异常情况会被第706行的断言检查所捕获:

 {...  aIdx[];     *pConstraint;... (i=; i nConstraint; i++, pConstraint++){  iCol;   iMask;   op = pConstraint->op;... iCol = pConstraint->iColumn - SERIES_COLUMN_START; ( iCol>= && iCol<= ); iMask =  << iCol;... ( pConstraint->usable== ){ unusableMask |= iMask; ; } ( op==SQLITE_INDEX_CONSTRAINT_EQ ){ idxNum |= iMask; aIdx[iCol] = i; } }

然而,在发布版本中,这个断言检查并不存在。

在研究者的测试环境中(具体表现会因编译器和优化级别而异),第718行的后续写入操作会越界写入aIdx缓冲区下方的内存区域,导致pConstraint指针的最低有效32位被破坏。

当这个被破坏的指针在循环的下一次迭代中被取消引用时,就会产生潜在的可利用漏洞条件。

不过,即使有了这样的漏洞说明,对于人类研究员来说,要精确理解如何触发这个漏洞仍然不易。

虽然针对ROWID列设置约束显然是个不错的切入点,但要完全理解,还需要深入研读代码。

而 AI 智能体似乎已经掌握了比人类研究员更多的SQLite相关知识,这使它能够更高效地定位问题!

这种情况的一个典型例子,就是LLM在生成测试用例时会直接使用generate_series虚拟表。

(虽然研究者也观察到模型会先研究可用的虚拟表的情况,但很明显,它能够在这里直接运用已有的知识)。

执行过程重点分析

在这次基于Gemini 1.5 Pro的成功测试中,seed commit为 [1976c3f7],这是一个规模较大、复杂的代码变更。

用例

而研究者的AI Agent发现的漏洞,与该seed commit中的变更仅存在松散关联——这种情况在手动变种分析中较为常见,因为在理解代码库中的某个漏洞时,研究人员往往会由此发现其他潜在问题。

以下是关键节点摘要,其中,所有ASSISTANT块中的内容均直接来自AI Agent。

AI Agent对差异中的变化进行了合理的评估,并以此作为研究的切入点:

在经过数个步骤探索相关代码后,AI Agent形成了一个更明确的测试假设——它试图通过运行patch中测试用例的修改版本来验证这个假设,但未能成功。

或挽回数十亿美元损失

原因在于patch中的测试用例依赖于一个在当前配置环境中未启用的扩展模块:

TOOL(debugger_run )

AI Agent很好地应对了这个问题,准确识别出了修复测试用例所需的各个步骤,并在后续几个步骤中成功收集到了所有构建测试用例所需的信息,最终实现了触达whereLoopAddVirtualOne的目标:

需要注意的是,在最初发现和复现该漏洞时,AI Agent对于它试图触发的「不正确约束处理」的描述相当模糊。

在这种情况下,完整的执行轨迹读起来颇似人类研究员的思维过程——从一个想法开始,在调查过程中产生其他几个想法,最终生成了一个可以复现略有不同漏洞的测试用例。

在本例中,当whereLoopAddVirtualOne在generate_series表上被调用时,执行流程最终会进入seriesBestIndex,在那里约束确实被错误处理了。

特别有趣的是,一旦程序崩溃,模型会在解释问题时表现得更为出色——在生成根因分析(root-cause analysis)和完整崩溃报告时,我们可以看到AI Agent清晰地构造了一个测试用例来触发特定的已识别边缘案例:

最终,得到了一个清晰准确的问题总结,几乎可以直接用于漏洞报告!

TOOL(debugger_run)

ASSISTANT(report_success)

关于模糊测试

一个显而易见的问题是:为什么传统的模糊测试没有更早发现这个漏洞?

答案就在模糊测试工具链的配置上。

OSS-Fuzz使用的工具并没有启用generate_series扩展,而替代的fuzzingshell.c工具包含的是旧版本的seriesBestIndex函数,未受此漏洞影响。

虽然SQLite AFL仓库中包含一个针对研究者提供给Big Sleep智能体的、相同CLI二进制文件的模糊测试配置,但似乎并未被广泛使用。

这个漏洞是否真的容易发现?

为此,研究者尝试通过模糊测试重新发现它。

他们遵循SQLite文档中的模糊测试说明,并使用CLI目标。在启动AFL运行之前,他们还验证了模糊测试语料库中包含所需的generate_series和rowid关键字。

然而,经过150个CPU小时的模糊测试,问题仍未被发现。

随后,他们尝试通过将必要的关键字添加到AFL的SQL字典中,来简化模糊测试的任务。

然而,似乎只有当语料库包含与导致崩溃的输入非常接近的示例时,漏洞才能被快速发现,因为代码覆盖率对这个特定问题并不是可靠的指标。

诚然,AFL并不是针对像SQL这种基于文本的格式最适合的工具,大多数输入在语法上无效,会被解析器拒绝。

真实世界

然而,如果将这一结果与Michal Zalewski在2015年关于模糊测试SQLite的博客文章进行比较,会发现十分有趣的事。

那时,AFL在发现SQLite漏洞方面相当有效;经过多年的模糊测试,该工具似乎已经达到自然的饱和点。

虽然研究者迄今为止的结果与AFL发布时带来的显著效果相比显得微不足道,但它有自己的优势——有概率能够有效地发现一组不同的漏洞。

结论

对于团队来说,这个项目无疑成功了。

在广泛使用且模糊化的开源项目中找到漏洞,非常一个令人兴奋!

谷歌agent

这也就意味着:当提供正确的工具时,当前的LLMs可以进行漏洞研究。

不过,研究者想重申,这些都是高度实验性的结果。

Big Sleep 团队表示:目前,在发现漏洞方面,针对特定目标的模糊器可能至少同样有效。

研究者希望,未来这项工作将为防御者带来显著优势——

不仅有可能找到导致崩溃的测试用例,还能提供高质量的根本原因分析,使得问题的分类和修复变得更便宜且更有效。

谷歌研究者表示,会继续分享自己的研究成果,尽可能缩小公共技术前沿和私有技术前沿之间的差距。

Big Sleep团队也会将继续努力,推进零日计划的使命,让0-day变得更加困难。

团队介绍

团队中唯一的华人Dan Zheng是谷歌DeepMind的研究工程师,从事代码和软件工程的机器学习,以及编程语言的研究。

此前,他曾参与Swift for TensorFlow的工作,专注于Swift中的可微分编程。

他在普渡大学获得了计算机科学专业的学士学位。毕业后,他做了多年的学生研究员,期间研究成果颇丰。

参考资料:

https://googleprojectzero.blogspot.com/2024/10/from-naptime-to-big-sleep.html


一、ANI病毒“ANI毒”变种b是一个利用微软Windows系统ANI文件处理漏洞枣衫(MS07-017)进行传播的网络蠕虫。 “ANI毒”变种b运行后,自我复制到系统目录下。 修改注册表,实现开机自启动。 感染正常的可执行文件和本地网页文件,并下载大量木马程序。 二、U盘寄生虫U盘寄生虫”是针对这样的自动播放文件的凳旦腔蠕虫病毒。 文件一般存在于U盘、MP3、移动硬盘和硬盘各个分区的根目录下,当用户双击U盘等设备的时候,该文件就会利用Windows系统的自动播放功能优先运行文件,而该文件就会立即执行所要加载的病毒程序,从而破坏用户计算机,使用户计算机遭受损失。 三、熊猫烧香该病毒是由“熊猫烧香”蠕虫病毒感染之后的带毒网页,该网页会被“熊猫烧香”蠕虫病毒注入一个iframe框架,框架内包含恶意网址引用,这样,当用户打开该网页之后,如果IE浏览器没有打上补丁,IE就会自动下载并且执行恶意网址中的病毒体,此时用户电脑就会成为一个新的病毒传播源,进而感染局域网中的其他用户计算机。 四、“ARP”类病毒能够在网络中产生大量的ARP通信量使网络阻塞或者实现“maninthemiddle”进行ARP重定向和嗅探攻击。 用伪造源MAC地址发送ARP响应包,对ARP高速缓存机制的攻击。 当局域网内某台主机运行ARP欺骗的木马程序时,会欺骗局域网内所有主机和路由器,让所有上网的流量必须经过病毒主机。 其他用户原来直接通过路由器上网现在转由通过病毒主机上网,切换的时候用户会断一次线。 切换到病毒主机上网后,如果用户已经登陆了传奇服务器,那么病毒主机就会经常伪造断线的假像,那么用户就得重新登录传奇服务器,这样病毒主机就可以盗号了。 五、代理木马Trojan/是一个盗取用户机密信息的木马程序。 “代理木马”变种crd运行后,自我复制到系统目录下,文件名随机生成。 修改注册表,实现开机自启。 从指定站点下载其它木马,侦听黑客指令,盗取用户机密信息。 六、网游大盗“网游大盗”变种hvs是一个木马程序,专门盗取网络游戏玩家的帐号、密码、装备等。 七、鞋匠鞋匠”迟渗变种je是一个广告程序,可弹出大量广告信息,并在被感染计算机上下载其它病毒。 “鞋匠”变种je运行后,在Windows目录下创建病毒文件。 修改注册表,实现开机自启。 自我注册为服务,服务的名称随机生成。 侦听黑客指令,连接指定站点,弹出大量广告条幅,用户一旦点击带毒广告,立即在用户计算机上安装其它病毒。 八、广告泡泡广告泡泡”变种e是一个广告程序,采用RootKit等底层技术编写,一旦安装,很难卸载彻底。 该程序会在C:\ProgramFiles\MMSAssist下释放出病毒文件。 在后台定时弹出广告窗口,占用系统资源,干扰用户操作。 九、埃德罗“埃德罗”变种ad是一个广告程序,在被感染计算机上强制安装广告。 十、IstBar脚本“IstBar脚本”变种t是一个用JavaScript语言编写的木马下载器。 “IstBar脚本”变种t运行后,在用户的计算机中强行安装IstBar工具条,造成用户系统变慢,自动弹出广告,强行锁定用户的IE首页等等。

  • 声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
  • 本文地址:https://m.srwj168.com.cn/keji312/32156.html
马斯克老部下创业成果 2mm芯片植入视网膜 盲人重获阅读能力
年薪50万 干满6年还送120平房子 陕西一县中学招录47名